EECS150 Fall 2000
Lab6 - Nasty Realities
by Sammy Sy

Don’t let the title scare you. Even though the final project might be nasty, this lab is not.

Sections
■ Some information on the electrical components in this lab
■ Capacitance vs Propagation delay
■ Reflection and Termination
■ Capacitive Coupling
■ Extra Xilinx tips

Components (1)
■ Breadboard
■ Which holes are connected with which?

Components (2)
■ Ribbon cable
■ Is interference a problem?
■ We’ll find out

Components (3)
■ Resistors and capacitors
■ Time to figure out how those colors on resistors and numbers on capacitors mean
■ Detailed description on the lab handout
■ Example: red-black-brown = 200 ohm (red = 2, black = 0, brown 1)

Components (4)
■ 74F04PC hex inverter chip
■ Essentially just a bunch of inverter gates
■ Remember an inverter requires input, and VCC and GND.
Components (5)
- We also need a bunch of normal wires to hook them up
- Remind yourself how to play with the pulse generator
- More practice with the mighty oscilloscope

What to do in this lab
- You will be building several simple circuits to measure gate delays, and observe how reflection and capacitance affect electrical signals.
- The lab handout gives you the step-by-step procedures.
- Some motivations.

Capacitance vs Propagation delay (1)
- Capacitance is evil
- Why?
- It limits how fast a gate transition can take place.
- In fact, all conductors are subject to this evilness - for example, two wires together.

Capacitance vs Propagation delay (2)
- Ring oscillator
- No stable state
- Therefore, those inverters will be switching as fast as their capacitance allows.
- \[T = 2 \times \text{delay} \times N \]

Reflection and Termination (1)
- What's reflection?
- If you view electrical signal as propagation of E&M waves, then a wire is no different than optical fiber.
- When the signal hits a dead end, it bounces back and interferes with itself.
- Can be solved by proper termination.

Reflection and Termination (2)
- Terminate by eliminating those dead ends.
- Add some load (i.e.: resistance).
- I once heard that TV cable companies detect undesired “fanouts” by sending a strong pulse to the wire and count the number of reflections received.
- Now you can outsmart them.
Capacitive Coupling (1)
- Recall the ribbon cable
- Signal on wire interferes with the neighboring wires. It’s especially noticeable in long and crowded wires.
- An undriven wire is more easily affected.

Capacitive Coupling (2)
- For example, say we have 3 wires A, B, and C arranged linearly (i.e., B is between A and B).
- Let A = some signal
- Let B = undriven
- Let C = some other signal
- Because B is undriven, it’s easily influenced by A and C

Capacitive Coupling (3)
- Simultaneously, B affects A and C.
- We can introduce a “shield” to protect the signals in A and C.
- If we ground B, it becomes much less likely to be manipulated by A and C.
- Thus, A and C won’t step onto each others’ toes.

Xilinx Tips (1)
- This lab doesn’t need Xilinx (relieved!)
- Difference between FDC and FDR (similarly applies to CC8CE vs CC8RE, etc)
- FDC = D-type flipflop with asynchronous clear
- FDR = D-type flipflop with synchronous reset

Xilinx Tips (2)
- Keep the clock signal clean!
- Read the implementation log
- Once you’ve made something into a macro, the original schematic file is not used by the project anymore.
- Ground yourself