Combinational Logic Design Case Studies

- General design procedure
- Examples
 - Calendar subsystem
 - BCD to 7-segment display controller
 - Process line controller
 - Logical function unit
- Arithmetic
 - Integer representations
 - Addition/Subtraction
 - Arithmetic/logic units

Calendar Subsystem

- Determine number of days in a month (to control watch display)
 - Used in controlling the display of a wrist-watch LCD screen
 - Inputs: month, leap year flag
 - Outputs: number of days
 - Use software implementation to help understand the problem

Choose Implementation Target and Perform Mapping

- Discrete gates
 - Table:
Month	Leap	28	29	30	31
0001	0	0	0	0	0
0010	1	0	0	0	0
0110	0	0	0	0	0
1010	0	0	0	0	0
1110	0	0	0	0	0
 - Can translate to S-o-P or P-o-S

General Design Procedure for Combinational Logic

1. Understand the Problem
 - What is the circuit supposed to do?
 - What are the inputs (data, control) and outputs
 - Draw block diagram or other picture
2. Formulate the Problem using a Suitable Design Representation
 - Truth table or waveform diagram are typical
 - May require encoding of symbolic inputs and outputs
3. Choose Implementation Target
 - ROM, PAL, PLA
 - Array, decoder and OR-gate
 - Discrete gates
4. Follow Implementation Procedure
 - K-maps for two-level, multi-level
 - Design tools and hardware description language (e.g., Verilog)

Formalize the Problem

- Encoding:
 - Binary number for month: 4 bits
 - 4 wires for 28, 29, 30 and 31
 - one-hot — only one true at any time
- Block diagram:

Choose Implementation Target and Perform Mapping

- Discrete gates:
 - Table:
Month	Leap	28	29	30	31
0001	0	0	0	0	0
0010	1	0	0	0	0
0110	0	0	0	0	0
1010	0	0	0	0	0
1110	0	0	0	0	0
 - Can translate to S-o-P or P-o-S

BCD to 7-segment display controller

- Understanding the problem
 - Inputs: a 4-bit code (A, B, C, D)
 - Output is the control signals for the display (7 outputs: 0-6)
- Block diagram:

Combinational Logic Design Case Studies
Formalize the problem

- Truth table
 - Show don’t care

- Choose implementation
 - Insert X to represent don’t care
 - Do any of Xs have to be used?
 - Don’t cares imply PAL/PLA may be attractive

- Follow implementation procedure
 - Minimization using K-maps

Implementation as Minimized Sum-of-Products

- 15 unique product terms when minimized individually

Implementation as Minimized S-o-P (cont’d)

- Can do better
 - 9 unique product terms (instead of 15)
 - Share terms among outputs
 - Each output not necessarily in minimized form

 PLA implementation

- Production Line Control
 - Rods of varying length (+/-10%) travel on conveyor belt
 - Mechanical arm pushes rods within spec (+/-5%) to one side
 - Second arm pushes rods too long to the other side
 - Rods that are too short stay on belt
 - 3 light barriers (light source + photosensitive) as sensors
 - Design combinational logic to activate the arms

- Understanding the problem
 - Inputs are three sensors
 - Outputs are two arm control signals
 - Assume sensor reads "1" when tripped, "0" otherwise
 - Call sensors A, B, C
Sketch of Problem

- Position of Sensors
 - A to B distance specification = 5%
 - A to C distance specification = 5%

Formalize the Problem

- Truth Table
 - Shows don't cares

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>do nothing</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>do nothing</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>do nothing</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>do nothing</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>too short</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>too long</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>too long</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>too long</td>
</tr>
</tbody>
</table>

Logic implementation now straightforward
o Direct from Input AND gates

Logical Function Unit

- Multi-purpose Function Block
 - 3 control inputs to specify operation to perform on operands
 - 2 data inputs for operands
 - 1 output of the same bit-width as operands

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>A</th>
<th>Function</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>A + B</td>
<td>Logic OR</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>A + B</td>
<td>Logic NAND</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>A + B</td>
<td>Logic AND</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>A + B</td>
<td>Logic OR</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>A + B</td>
<td>Logic AND</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>A + B</td>
<td>Logic OR</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>A + B</td>
<td>Logic AND</td>
</tr>
</tbody>
</table>

Formalize the Problem

- choose implementation technology

Arithmetic Circuits

- Excellent Examples of Combinational Logic Design
 - Time vs. Space Trade-offs
 - Doing things fast may require more logic and thus more space
 - Example: carry look-ahead logic
 - Arithmetic and Logic Units
 - General-purpose building blocks
 - Critical components of processor datapaths
 - Used within most computer instructions

Number Systems

- Representation of positive numbers is the same in most systems
- Major differences are in how negative numbers are represented
- Representation of negative numbers come in three major schemes
 - Sign and magnitude
 - 1's complement
 - 2's complement
- Assumptions
 - We'll assume a 4-bit machine word
 - 16 different values can be represented
 - Roughly half are positive, half are negative
Sign and Magnitude

- One bit dedicate to sign (positive or negative)
- 0 sign: 0 is positive or zero, 1 is negative

- Rest represent the absolute value of magnitude
- Three lowest order bits: 0000-7 (011)

- Range for n bits
- \(n = 2^{n-1} \) (two representations for 0)

- Cumbersome addition/subtraction
- Must compare magnitudes to determine sign of result

1's Complement

- If \(N \) is a positive number, then the negative of \(N \) (its 1's complement or \(N' \)) is \(N' = 2^n - N \)
- Example: 1's complement of 7
 \[
 2^3 = 0000 \\
 1 = 0001 \\
 2^2 - 1 = 1111 \\
 7 = 0111 \quad \rightarrow \text{is 1's complement form}
 \]

- Shortcut: simply compute bit-wise complement (0111 \(\rightarrow \) 0000)

2's Complement

- 2's complement with negative numbers shifted one position clockwise
- Only one representation for 0
- One more negative number than positive number
- High-order bit can act as sign bit

2's Complement Addition and Subtraction

- Simple Addition and Subtraction
- Simple scheme makes 2's complement the virtually unanimous choice for integer number systems in computers

- Example: 2's complement of 7
 \[
 2^3 = 0000 \\
 7 = 0111 \\
 \text{subtract } 0001 = \text{rep of } 7
 \]

- Example: 2's complement of -7
 \[
 2^3 = 0000 \\
 7 = 0111 \\
 \text{subtract } 1001 = \text{rep of } 7
 \]

- Shortcut: 2's complement = bit-wise complement + 1
 \[
 0011 = 0000 + 1 = 0011 \quad \text{(representation of -7)} \\
 0000 + 0110 = 0111 \quad \text{(representation of 7)}
 \]
Why Can the Carry-out be Ignored?

- Can't ignore it completely
- Needed to check for overflow (see next two slides)
- When there is no overflow, carry-out may be true but can't be ignored

\[M + N \quad \text{when } N > M: \]
\[M^* + N = (2^n - M) + N = 2^n - (N - M) \]

ignoring carry-out is just like subtracting 2^n

\[M = -N \quad \text{where } N > M \leq 2^n - 1 \]
\[(-M)^* + (-N)^* + N^* = (2^n - M) + (2^n - N) = 2^n - (M + N) + 2^n \]

ignoring the carry, it is just the 2's complement representation for \(-M^* N^*\)

Overflow in 2's Complement Addition/Subtraction

- Overflow conditions
 - Add two positive numbers to get a negative number
 - Add two negative numbers to get a positive number

\[\begin{array}{c|c|c|c|c|c}
 \text{Overflow} & \text{Add A} & \text{Add B} & \text{Sum} & \text{Carry} \\
 \hline
 \text{No} & 0 & 0 & 0 & 0 \\
 \text{Yes} & 1 & 1 & 1 & 1 \\
\end{array} \]

Circuits for Binary Addition

- Half adder (add 2 1-bit numbers)
 - Sum = \(A' B + A B' = A \oplus B \)
 - Carry = \(A B \)

- Full adder (carry-in to cascade for multi-bit adders)
 - Sum = \(G + A C + B G + (A + B) \cdot A B \)
 - Carry = \(G + C A + B G + (A + B) \cdot A B \)

Full adder implementations

- Standard approach
 - 6 gates
 - 2 XORs, 2 ANDs, 2 ORs

- Alternative implementation
 - 5 gates
 - Half adder is an XOR gate and AND gate
 - 2 XORs, 2 ANDs, 1 OR

Adder/Subtractor

- Use an adder to do subtraction thanks to 2's complement representation
 - \(A - B = A + (-B) = A + B' + 1 \)
 - Control signal selects \(B \) or 2's complement of \(B \)
Ripple-Carry Adders

Critical Delay
- The propagation of carry from low to high order stages

![Diagram of Ripple-Carry Adders](image)

Ripple-Carry Adders (cont'd)

Critical delay
- The propagation of carry from low to high order stages
- $\begin{array}{ll} \text{III} & \text{XXXX} \end{array}$ is the worst case addition
- Carry must propagate through all bits

![Graph of Ripple-Carry Adders](image)

Carry-Lookahead Logic

Carry generate: $G_i = A_i B_i$
- Must generate carry when $A = B = 1$

Carry propagate: $P_i = A_i \oplus B_i$
- Carry-in will equal carry-out here

Sum and Carry can be re-expressed in terms of generate/propagate:
- $G = A_i \oplus B_i \oplus G_i$
- $P = A_i \oplus B_i \oplus (A_i \oplus B_i) = A_i \oplus B_i \oplus G_i$

Carry-Lookahead Logic (cont'd)

Re-express the carry logic as follows:
- $C_1 = \overline{C_0}$
- $C_2 = \overline{C_1} + P_1 + P_0 C_0$
- $C_3 = \overline{C_2} + P_2 C_2 + P_2 C_1 + P_2 P_0 C_0$
- $C_4 = \overline{C_3} + P_3 C_3 + P_3 C_2 + P_3 P_2 C_2 + P_3 P_2 C_1 + P_3 P_2 C_0 + P_3 P_2 P_1 C_0$

Each of the carry equations can be implemented with two-level logic:
- All inputs are now directly derived from data inputs and not from intermediate carries
- This allows computation of all sum outputs to proceed in parallel

Carry-Lookahead Implementation

Adder with propagate and generate outputs

Carry-Lookahead Implementation (cont'd)

Carry-lookahead logic generates individual carries:
- Sums computed much more quickly in parallel
- However, cost of carry logic increases with more stages

![Diagram of Carry-Lookahead Implementation](image)
Summary for Examples of Combinational Logic

- Combinational logic design process
 1. Formalize problem encoding: truth-table, equations
 2. Choose implementation tech (COIL, PAL, PLA, discrete gates)
 3. Implement by following the design procedure for that technology

- Binary number representation
 1. Positive numbers the same
 2. Difference is in how negative numbers are represented
 3. 2's complement easiest to handle: one representation for zero, slightly complicated implementation simple addition

- Circuits for binary addition
 1. Basic half-adder and full-adder
 2. Carry look-ahead logic
 3. Carry-select

- ALU Design
 1. Specification, implementation